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The origin of the problem
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XX1
4321

Sinden 1966 
Topology of Thin Film RC Circuits



String Graph

XXX4
XX3
XXX2
XX1
4321

G =

Is G an intersection graph of 
a set of curves in the plane?



Planar graphs are 
string graphs
(Sinden, 1966)

Recognizing string 
graphs is NP-hard
(Kratochvíl, 1991)

Recognizing string 
graphs is decidable
(in NEXP)
(Pach, Tóth, 2000;
Schaefer, Š, 2000)

String Graphs



Weak realizability

G =

Can G be drawn in the plane ?

• red edge may intersect green edge
• red edge may intersect orange edge
• no other pair of edges may intersect

String Weak realizability (Matoušek, Nešetřil, Thomas‘88)



Weak realizability

Input: 
• Graph G
• set R of pairs of edges

Output: 
Is there a drawing of G in the plane such 
that only pairs from R may intersect?

(e.g. R=0 corresponds to planarity testing)



Weak realizability
NP-hard (Kratochvíl  ‘91)

NEXP (Pach, Tóth  ‘00; Schaefer, Š ‘00)

Theorem: If there is a drawing realizing
(G,R) then there is a drawing with at
most m2    intersections where m is 
the number of edges of G.

m

The Theorem is tight (Kratochvíl, Matoušek ‘91)



How to encode the witness?

edge properly embedded arc (parc)

isotopy rel endpoints = continuous 
deformations not moving endpoins 



Intersection number i(α,β) of
two parcs α,β

min{|a b| ; a C(α), b C(β)}

On an orientable surface any collection
of parcs can be redrawn so that any two 
parcs α,β intersect at most i(α,β) times.

Lemma:

(set of curves isotopic to α)



The proof of weak realizability

• encode the properly embedded arcs
(up to isotopy)

• for each pair α,β not in R check i(α,β)=0



1) A triangulation T of M
Encoding the parcs



Encoding the parcs
2) Normalization of the parc w.r.t. T
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Encoding the parcs
3) Compute normal coordinates



Parcs having the same normal 
coordinates are isotopic rel boundary. 
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x+y=3
x+z=5
y+z=4

Encoding the parcs
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Encoding the parcs



Encoding the parcs
Is it polynomial ?

Theorem: If there is a drawing realizing
(G,R) then there is a drawing with at
most m2    intersections where m is 
the number of edges of G.

m

construct a weak realizability problem 
including the triangulation and use



Word equations
xayxb=axbxy x,y – variables

a,b - constants 
a solution

x=aaaa
y=b

Word equations with given lengths

|x|=4
|y|=1

xayxb=axbxy
The size of the bit 
representation of 
the numbers counts
to the size of the input



Word equations

Word equations with given lengths

NP-hard
in PSPACE (Plandowski ’99)

in P (Plandowski, Rytter ’98)
the lexicographically smallest solution 
given by a  straight line program



Coloring components of a curve
normal coordinates – can encode any embedded 
collection of closed curves and parcs (=curve)

x+y=a
x+z=b
y+z=c



Coloring components of a curve

u

v
w

Xu,v yu,t

yt,v

for edges from T M equation X     = a, b, ... u,v

triangle t

normal coordinates – can encode any embedded 
collection of closed curves and parcs (=curve)

colors occuring 
on (u,v)

| X      | = α(u,v)u,v



Do coordinates of α encode a parc?

• encode the properly embedded arcs
(up to isotopy)

• for each pair α,β not in R check i(α,β)=0

The proof of weak realizability

Are parcs α, β isotopically disjoint?
• check that both α, β are parcs
• color one component of α+β by “b”
• They are disjoint iff the component

is either α or β



Are parcs α, β isotopically disjoint?
• check that both α, β are parcs
• color one component of α+β by “b”
• They are disjoint iff the component

is either α or β

α
β



Are parcs α, β isotopically disjoint?
• check that both α, β are parcs
• color one component of α+β by “b”
• They are disjoint iff the component

is either α or β

α+β



Consequences + other results
pairwise crossing number NP

Can be done in NP?
weak realizability on different surfaces

existential theory of diagrams 
(topological inference) NP

A B
C

A intersects B
B intersects C
A is disjoint from C


